14 resultados para Oligosaccharide

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with S-4(3/2) -> I-4(15/2) at similar to 540 nm and F-4(9/2) -> I-4(15/2) at similar to 653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligosaccharides were prepared through mild hydrochloric acid hydrolysis of kappa-carrageenan from Kappaphycus striatum to compare the antitumor activity with carrageenan polysaccharides. Oligosaccharide fractions were isolated by gel permeation chromatography and the structure of fraction 1 (F1) was studied by using negative- ion electrospray ionization-mass spectrometry (ESI-MS), and H-1 and C-13-NMR spectrometry. The in vitro antitumor effects in three human neoplastic cell lines (KB, BGC, and Hela) of polysaccharides and F1 were investigated. The bioassay results showed that F1 exhibited relatively higher antitumor activity against the three cancer cells than polysaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate/kappa-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2x10(6) (mol/L)(-1) and 3:1, respectively. However, the interaction between K-carrageenan oligosaccharide and G-CSF was not found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gynogenetic silver crucian carp, Carassius auratus gibelio, is an intriguing model. system. In the present work, a systemic study has been initiated by introducing suppression subtractive hybridization technique into this model system to identify the differentially expressed genes in oocytes between gynogenetic silver crucian carp and its closely related gonochoristic color crucian carp. Five differential cDNA fragments were identified from the preliminary screening, and two of them are ZP3 homologues. Moreover, the full length ZP3 cDNAs were cloned from their oocyte cDNA libraries. The length of ZP3 cDNAs were 1378 bp for gyno-carp and 1367 bp for gono-carp, and they can be translated into proteins with 435 amino acids. Obvious differences are not only in the composition of amino acids, but also in the number of potential O-linked oligosaccharide sites. In addition, gyno-carp ZP3 amino acid sequence has an unexpected higher identity value with common carp (83.5%) than that with the closely related gono-carp (74.7%). The unique homology may be originated from the ancient hybridization. Northern blot analysis confirmed that expression of the ZP3 gene occurred exclusively in the oocytes. Because O-linked oligosaccharides on ZP3 have been demonstrated to play very important roles in fertilization, it is suggested that the extra O-linked glycosylation sites may be related to the unique sperm-egg recognition mechanism in gynogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from the polysaccharides present in N. commune collected in the field. High pH anion exchange chromatography (HPAEC) of weak acid hydrolysates of the culture-grown material demonstrated that, in this case, HPAEC was useful for comparison of the different polymers. The main differences between the polymers from the field group and the culture-grown samples were the presence of substantial amounts of arabinose, 2-O-methylglucose, and glucuronic acid in the latter. Methylation studies also revealed a difference in the branching points on the glucose units between the field and cultured samples, being 1,4,6 for the first and 1,3,6 for the latter. The field acidic fraction gave, on weak acid hydrolysis and separation on BioGel P2 and HPAEC, 12 oligosaccharide fractions that were isolated and studied by different mass spectroscopy techniques. The structures of the oligosaccharides were determined, and two different series that can originate from two repeating pentamers were identified: GlcAl-4/6GlcM1-4Ga11-4Glc1-4Xyl and GlcAl-4/6Glc1-4Ga11-4Glc1-4Xyl. The difference between these oligosaccharides lies in the methyl substituent on carbon 2 of the glucose unit next to the nonreducing glucuronic acid unit. The polysaccharides from field material were shown to have a strong effect on the complement system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在糖化学中,糖原酸酯是一类重要的合成中间体,广泛运用于1,2-反式糖苷的合成,尤其对于寡糖的立体选择性合成具有重要的价值。目前文献报道的制备糖原酸酯的方法大多存在对环境不友好的问题。本文对传统的糖原酸酯制备方法进行了改进,通过研究发现无机碱也能够有效地催化合成糖原酸酯。以溴代糖和醇(或糖基受体)为原料,在无机碱、四丁基溴化铵、乙腈的体系中,合成了一系列简单醇糖原酸酯和糖-糖原酸酯。 聚乙二醇及其衍生物作为有机反应的溶剂和催化剂在有机化学中有广泛的应用。本文阐述了一种以溴代糖和醇(或糖基受体)为原料,在无机碱和聚乙二醇二甲醚反应体系中合成糖原酸酯的方法。该方法中,聚乙二醇二甲醚即作为绿色溶剂又作为催化剂,反应条件温和、环保、高效。 糖胺是一类重要的糖苷酶抑制剂,已在糖尿病和其他代谢紊乱等疾病的治疗中发挥了极其重要的作用。本文提供了一种合成一类具有潜在的糖苷酶抑制活性、结构新颖的二环糖胺的途径。该合成思路是以1-叠氮基-2-C-乙酰甲基-3,4,6-三-O-苄基-2-脱氧-β-D-葡萄糖为原料,经二环糖亚胺中间体,通过二环糖亚胺还原或加成得到一类二环糖胺。 Sugar orthoesters as one of the most important intermediates in carbohydrate chemistry, are used extensively in the synthesis of sugar 1,2-trans-glycosides, especially oligosaccharide. These methods in the literature are mostly eco-unfriendly. Herein we described a modified protocol for the preparation of sugar orthoesters using inorganic base, by improving the conventional method. Our method involves the treatment of peracetylated or perbenzotlated glycosyl bromides with alcohols in the presence of a quaternary ammonium salt and an inorganic alkali in acetonitrile solvent, affording both simple sugar orthoesters and sugar-sugar orthoesters. Polyethylene glycol and their derivatives as solvents or catalysts play a significant role in the organic reaction. We developed a novel and environmentally benign methodology towards the synthesis of sugar orthoesters, which are prepared by the reaction of peracetylated or perbenzotlated glycosyl bromides and alcohols in the presence of dimethyl ether of polyethylene glycol as either the reaction medium or catalyst. Glycosylamines and pseudo-glycosylamines have been tested against various glycosidases, and applied to the treatment of diabetes and other metabolic disorders. We presented a route of the synthesis of a bicyclic glycosylamine as a potential glycosidases inhibitor with unique structure. Reduction of 2-C-acetlymethyl-β-glucopyranosyl azide derivative firstly produced a bicyclic glycosylimine intermediate, and subsequently the bicyclic glycosylamine and its derivatives would be prepared through the selective reduction or addition the C=N double bond of the bicyclic glycosylimine intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文对不同菌种(酵母菌和运动发酵单胞菌)快速生产燃料乙醇的条件进行了研究,实现了鲜甘薯快速转化为燃料乙醇。全文分为两部分: 第一部分:酵母菌快速生产燃料乙醇的条件研究。通过单因素试验,酵母菌快速生产燃料乙醇的条件为:发酵方式采用边糖化边发酵(SSF),蒸煮温度为85 ℃,料水比2:1(初始糖浓度 210 g/kg),糖化酶用量0.75 AGU/g 鲜甘薯,接种量10%(v/w)。在最优条件下,经过24 h发酵,乙醇浓度可达97.44 g/kg, 发酵效率为92%,发酵强度为4.06 g/kg/h。由于采用了低温蒸煮和SSF,可以大大节约能耗,从而降低乙醇生产的成本。同时,利用摇瓶优化的条件,进行了10 L,100 L,500 L发酵罐的放大试验,由于发酵罐初期可以人为通氧,使菌体能迅速积累,发酵时间缩短2 h,发酵效率在90%以上。 第二部分:运动发酵单胞菌快速生产燃料乙醇条件研究。通过单因素试验和正交试验获得了发酵的最佳参数:初始pH值6.0-7.0,硫酸铵5.0 g/kg,糖化酶量1.6 AUG/kg淀粉,初始糖浓度200 g/kg,接种量12.5%(v/w)。经过21 h发酵,乙醇浓度为95.15 g/kg,发酵效率可达94%。同时对不灭菌发酵也进行了研究,发酵效率可达92%。为鲜甘薯运动发酵单胞菌燃料乙醇的工业化生产打下基础。 对发酵结束后的残糖进行了研究。通过薄层层析和葡萄氧化酶测定证明:无论是酵母菌还是运动发酵单胞菌发酵结束后的发酵液中都不含葡萄糖。经过HPLC进一步分析残糖说明:发酵液中已没有葡萄糖成分;经糖化酶水解后仍没有葡萄糖出现;但经酸水解后又出现了葡萄糖,说明结束后的残糖是一些低聚糖结构。有关残糖的结构需要进一步研究。可以通过开发高效的低聚糖水解酶来降低发酵液的残糖,提高原料的利用率。 A new technology for rapid production fuel ethanol from fresh sweet potato by different microorganisms (Saccharomyces cerevisiae and Zymomonas mobilis) was gained in this research. The paper involved two parts: Part 1: The study on fuel ethanol rapid production from fresh sweet potato by Saccharomyces cerevisiae. The following parameters of Saccharomyces cerevisiae was investigated by a series of experiments: fermentation models, cooking temperature, initial sugar concentration and glucoamylase dosage. The results showed that SSF (simultaneous saccharification and fermentation) not only reduced the fermentation time (from 30 to 24h) but also enhanced the ethanol concentration (from 73.56 to 95.96 g/kg). With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg which the fermentation yield could reach to 92% and ethanol productivity 4.06 g/kg/h from sweet potato enzymatic hydrolysis. Furthermore, the savings in energy by carrying out the cooking (85 ℃) and saccharification (30 ℃) step at low temperature had been realized. The results were also verified in 10 L, 100 L and 500 L fermentor. The fermentation yield was no less than 90%. The fermentation time of fermenter was shorter than Erlenmeyer flask. This may be that the aeration in the early fermentation period is available, which lead to the rapidly commutations of biomass. Part 2: The technology of ethanol rapid production with simultaneous saccharification and fermentation ( SSF ) by Zymomonas mobilis,using fresh sweet potato as raw material was studied. The effects of various factors on the yield of ethanol were investigated by the single factor and the orthogonal experiments. As a result, the optimal technical conditions were obtained from those experiments:initial pH value 6.0-7.0, nitride 5.0 g/kg,(NH4)2SO4, glucoamylase 1.6 AUG/kg starch, inoculums concentration 12.5% (v/w). The Zymomonas mobilis was able to produce ethanol 95.15 g/kg, with 94% of the theoretical yield, from fresh sweet potato after 24 h fermentation. The fermentation efficiency of non-sterilized was also reach to 92%. We also analyzed the final fermentation residual sugars of Saccharomyces cerevisiae and Zymomonas mobilis. When the residual sugars were analyzed by thin-layer chromatogram and glucose oxidase, there was no glucose. The analysis of reducing sugars by HPLC showed that there was no glucose existed in the fermentation liquor. However, the glucose appeared after being hydrolyzed by acid. It is indicated that the residual sugars in the final fermentation liquor were the configuration of oligosaccharide, which was linked by the special glycosidic bonds. It was feasible for reducing residual sugars to develope the enzyme that can degradation the oligosaccharide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文结合我国燃料乙醇发展的方针政策,以酿酒酵母和运动发酵单胞菌为菌种研究其在非粮能源作物木薯中乙醇发酵的情况,为木薯原料更好地应用于生产中提供了理论依据。 酿酒酵母木薯高浓度乙醇发酵的研究。实验采用的木薯干淀粉含量约70-75%。以酿酒酵母为菌种进行高浓度乙醇发酵的工艺条件研究,最佳条件为:木薯干粉碎细度为35目,料水比1:2,α-淀粉酶用量0.09 KNU/g淀粉,蒸煮温度85 ℃,蒸煮时间15 min。采用30 ℃同步糖化发酵工艺,糖化酶用量为3.4 AGU/g淀粉,发酵时间30 h。在10 L发酵罐中,乙醇质量比达127.88 g/kg,发酵效率为88.28%,发酵强度4.263 g/kg/h,100 L中试研究中乙醇浓度为127.75 g/kg,发酵强度4.258 g/kg/h。利用高效液相色谱对发酵液中残糖进行了分析,证明葡萄糖、果糖等单糖已完全被菌体利用,剩余糖为二糖,三糖等不可发酵的低聚糖。 运动发酵单胞菌快速乙醇发酵的研究。对实验室保藏的8株运动发酵单胞菌进行比较,选择发酵速度最快的Zymomonas mobilis232B进行研究。该菌在纯葡萄糖中的最佳发酵条件为:葡萄糖浓度18%,起始pH 6-7,发酵温度30 ℃,发酵时间18 h,乙醇浓度88 g/kg。在以木薯为底物同步糖化快速乙醇发酵中,采用Full Factorial设计和最速上升实验确定了培养基成分中的2个显著性因子及其最适浓度:酵母粉4 g/kg,硫酸铵0.8 g/kg。在最适培养基条件下,对木薯料水比和糖化酶用量进行了优化,得到Z.mobilis232B木薯乙醇发酵最佳料水比1:3,糖化酶浓度4 AGU/g淀粉,乙醇发酵4.915 g/kg/h。利用高效液相色谱对发酵液中残糖进行了分析,剩余糖为二糖,三糖等,但成分较酵母发酵后复杂。 According to the fuel ethanol development plans and policies in our country, the ethanol production from cassava by Saccharomyces cerevisiae and Zymomonas mobilis was studied. It provided theoretical basis for ethanol fermentation by cassava in industry. Part 1 is the study of VHG (very high gravity) ethanol fermentation by Saccharomyces cerevisiae. The content of starch in cassava was 70-75%. Compared with the performances under different experimental conditions, the following optimal conditions for VHG fermentation were obtained: Granule size of dry cassava 35 mashes, hydromodulus of cassava to water at 1:2, α-amylase enzyme dosage 0.09 KNU/g starch, cooking temperature 85 ℃ for 15 min, using the SSF process (simultaneous saccharification and fermentation) and the amount of glucoamylase 3.4 AGU/g starch. Accordingly, the final ethanol concentration was up to 127.88 g/kg; the ethanol yield reached 88.28%, and ethanol productivity was 4.263 g/kg/h after 30 h. When the fermentation scale expanded to 100 L, the final ethanol concentration was 127.75 g/kg, and the ethanol productivity was 4.258 g/kg/h in 30 h. The residual sugar was analyzed by high performance liquid chromatography, and proved that there was no glucose and fructose. The residual reducing sugar was some unfermentable oligosaccharide Part 2 is the study of the rapid ethanol production by Zymomonas mobilis. Compare with other seven stains, Zymomonas mobilis 232B was selected for research. The optimum condition in glucose medium was as follow: glucose concentration 18%, initial pH 6-7, and fermentation temperature 30 ℃. The ethanol concentration was 88g/kg in 18 h. After that, rapid ethanol production from cassava in SSF by Zymomonas mobilis 232B was studied. Through a series of experiments aided by Full Factorial Design and steepest ascent search, the optimal concentration yeast extract and ammonium sulfate were determined: 4 g/kg and 0.8 g/kg, each. Under optimum medium conditions, the optimal hydromodulus of cassava to water and glucoamylase dosages were obtained: hydromodulus of cassava to water at 1:3 and glucoamylase dosages 4 AGU/g starch. The ethanol production reached 4.915 g/kg/h. The residual sugar was analyzed by HPLC, and proved that the residual reducing sugar was some unfermentable oligosaccharide,but the components were more complex than that fermentation by Saccharomyces cerevisiae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the strong application background of bioflavonoid and metal-flavonoid complexes, novel electrospray ionization tandem mass spectrometry (ESI-MSn) was applied to investigate the structure and fragmentation mechanism of transition metal-rutin complexes. In the full-scan mass spectra, different stoichiometric ratios of rutin-metal complexes were found. In the reaction between rutin and Cu, four kinds of complexes with four different stoichiometric ratios were produced. In the reaction between rutin and Zn, Mn(II), and Fe(II), only two kind of complexes with stoichiometric ratios of 1:1 and 1:2 occured. In further tandem mass spectrometric experiments of different rutin-metal complexes, product fragments, came from the neutral loss of the external rhamnose and the internal glucose unit, oligosaccharide chain, aglycone, and small organic molecules. According to the MSn data, we proposed a mechanism for all fragments of the rutin-Cu complex A and the structure of two rutin-Cu complexes, C and D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MSn has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-Acetylchitooligosaccharide (N-acetyl-COs) was prepared by N-acetylation of chitooligosaccharide (COs). In vitro study using human umbilical vein endothelial cells (HUVECs) revealed that both N-acetyl-COs and COs inhibited the proliferation of HUVECs by inducing apoptosis. Treatment of HUVECs by N-acetyl-COs resulted in a significant reduction of density of the migration cells and repressed tubulogenesis process. The antiangiogenic effects of the oligosaccharides were further evaluated using in vivo zebrafish angiogenesis model, and the results showed that both oligosaccharides inhibited the growth of subintestinal vessels (SIV) of zebrafish embryos in a dose-dependent manner, as observed by endogenous alkaline phosphatase (EAP) staining assay. In contrast, no cytotoxicity was found when treating the NIH3T3 and several other cancer cells with the oligosaccharides. Our results also confirmed the antiangiogenic activity of N-acetyl-COs was significantly stronger than the parent oligosaccharide, COs. (c) 2007 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to study the relationship between chemical structure and properties of modified carrageenans versus antioxidant activity in vitro, K-carrageenan oligosaccharides were prepared through mild hydrochloric acid hydrolysis of the polysaccharide, and these were used as starting materials for the partial synthesis of their oversulfated, acetylated, and phosphorylated derivatives. The structure and substitution pattern of the oligosaccharides and their derivatives were Studied using FTIR and C-13 NMR spectroscopy, and their in vitro antioxidant activities were investigated. Certain derivatives of the carrageenan oligosaccharides exhibited higher antioxidant activity than the polysaccharides and oligosaccharides in certain antioxidant systems. The oversulfated and acetylated derivatives, which scavenge superoxide radicals, the phosphorylated and low-DS acetylated derivatives, which scavenge hydroxyl radicals, and the phosphorylated derivatives, which scavenge DPPH radicals, all exhibited significant antioxidant activities it, the systems examined. The effect of the molecular weight of the carrageenan on antioxidant activities, however, is not obvious from these studies. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A natural lectin from the serum of the shrimp Litopenaeus vannamei was purified to homogeneity by a single-step affinity chromatography using fetuin-coupled agarose. The purified serum lectin (named LVL) showed a strong affinity for human A/B/O erythrocytes (RBC), mouse RBC, chicken RBC and its haemagglutinating (HA) activity was specifically dependent on Ca2+ and reversibly sensitive to EDTA. LVL inactive form had a molecular mass estimate of 172 kDa and was composed of two non-identical subunits (32 and 38 kDa) cross-linked by interchain disulphide bonds. Significant LVL activity was observed between pH 7 and 11. In HA-inhibition assays performed with several carbohydrates and glycoproteins, LVL showed a distinct and unique specificity for GalNAc/GluNAc/NeuAc which had an acetyl group, while glycoproteins fetuin and bovine submaxillary mucin (BSM) had sialic acid. Moreover, this agglutinin appeared to recognise the terminal N- and O-acetyl groups in the oligosaccharide chain of glycoconjugates. The HA activity of L. vannamei lectin was also susceptible to inhibition by lipopolysaccharides from diverse Gram-negative bacteria, which might indicate a significant in vivo role of this humoral agglutinin in the host immune response against bacterial infections. (C) 2006 Elsevier Ltd. All rights reserved.